Замена жесткого диска в софтовом RAID 1

Алгоритм решения:

- 1. Определение проблемы
- 2. Удаление поврежденного диска
- 3. Подготовка нового диска
- 4. Добавление жёсткого диска в массив после замены

Определение проблемы

Для начало разберем проблему. Имеется физический сервер с установленным на нём CentOS 7, в котором 2 HDD диска по 2 TБ: /dev/sda, /dev/sdb. Эти диски собраны в софтварный RAID1. Предположим, что вышел из строя диск — sdb. Проверив диск в массиве, вы увидите следующую картину:

cat /proc/mdstat

[root@LD218-7 ~]# cat /proc/mdstat Personalities : [raid1] mdl25 : active raid1 sdb2[1](F) sda2[0] 1048576 blocks super 1.2 [2/1] [U_] bitmap: 0/1 pages [0KB], 65536KB chunk mdl26 : active raid1 sdb1[2](F) sda1[0] 8257536 blocks super 1.2 [2/1] [U_] mdl27 : active raid1 sdb3[1](F) sda3[0] 1944071168 blocks super 1.2 [2/1] [U_] bitmap: 4/15 pages [16KB], 65536KB chunk

У нас имеется З массива:

/dev/md125 - /boot
/dev/md126 - swap
/dev/md127 - /

В данном случае мы можем наблюдать, что диски действительно собраны в RAID1. Когда массив в порядке, то он отображается как [UU]. Так как диски зеркальны, то каждый раздел объединен между собой и назван по своему. Например: md125 состоит из sda2,sdb2. Md125 в данном случае это — /boot. Более подробную информацию о разбивки дисков вы можете узнать, командой:

lsblk

[root@LD2]	lsb	lk				
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
sda	8:0	0	1.8T	0	disk	
—sdal	8:1	0	7.9G	0	part	
md126	9:126	0	7.9G	0	raidl	[SWAP]
—sda2	8:2	0	1G	0	part	
md125	9:125	0	1G	0	raidl	/boot
L_sda3	8:3	0	1.8T	0	part	
L_md127	9:127	0	1.8T	0	raidl	/
sdb	8:16	0	1.8T	0	disk	
-sdb1	8:17	0	7.9G	0	part	
md126	9:126	0	7.9G	0	raidl	[SWAP]
-sdb2	8:18	0	1G	0	part	
md125	9:125	0	1G	0	raidl	/boot
Lsdb3	8:19	0	1.8T	0	part	
L_md127	9:127	0	1.8T	0	raidl	/

Если вы хотите знать подробную информацию о массиве и что в него входит, то используйте команде:

mdadm --detail /dev/md125

```
[root@LD114 ~] # mdadm --detail /dev/md125
/dev/md125:
       Version : 1.0
 Creation Time : Thu Sep 27 16:24:27 2018
    Raid Level : raidl
    Array Size : 1049536 (1024.94 MiB 1074.72 MB)
 Used Dev Size : 1049536 (1024.94 MiB 1074.72 MB)
  Raid Devices : 2
 Total Devices : 2
   Persistence : Superblock is persistent
 Intent Bitmap : Internal
   Update Time : Tue Oct 2 13:47:50 2018
         State : clean
Active Devices : 2
Working Devices : 2
Failed Devices : 0
 Spare Devices : 0
          Name : ldll4.fairyhosting.com:boot
          UUID : 38fc6cbe:7b65bf29:016feb63:7279f4a7
        Events : 60
   Number
            Major
                    Minor RaidDevice State
              8
                                                     /dev/sda2
                                       active sync
              8
                      18
                                       active sync
                                                     /dev/sdb2
```

Удаление поврежденного диска

Для установки нового диска в RAID 1 массив, необходимо удалить сперва сбойный диск. Данную процедура проводится для каждого раздела.

```
# mdadm /dev/md125 -r /dev/sdb2
# mdadm /dev/md126 -r /dev/sdb1
# mdadm /dev/md127 -r /dev/sdb3
```

В некоторых случаях, жёсткий диск может быть повреждён частично. Пример: статус [U_] у массива /dev/md127, а у других массивов статус [UU]. В данном случае нам необходимо указать только одну команду:

```
# mdadm /dev/md127 -r /dev/sdb3
```

Следовательно остальные разделы будут отображены, как устройство /dev/sdb1 и /dev/sdb2 — впорядке. После попытки удалить раздел из массива, будет отображаться ошибка.

Чтобы исправить и изъять их, необходимо будет выполнить команды:

mdadm --manage /dev/md125 --fail /dev/sdb2
mdadm --manage /dev/md126 --fail /dev/sdb1

Тем самым вы измените их статус на [U_]. Далее провести процедуру, что и с массивом md127.

Посмотрим диски и разделы, входящие в массив, чтобы убедиться, что диск был изъят полность:

mdadm --detail /dev/md125
mdadm --detail /dev/md126
mdadm --detail /dev/md127

cat /proc/mdstat

Теперь диск готов к замене. Необходимо будет отправить запрос через нашу систему тикетов, для замены диска и согласовать время проведения работ с техником. П.С. Сервер будет остановлен на некоторое время!

Подготовка нового диска

Определение таблицы разделов(GPT, MBR) и перенос её на новый диск.

Новый диск, будучи в массиве должен иметь абсолютно одинаковое разбиение. В зависимости от используемых типов таблиц разделов (GPT/MBR), нужно использовать соответствующие утилиты для копирования таблиц разделов.

GPT - sgdisk

MBR – *sfdisk*

Так как у нас диски HDD по 2TБ, то мы будем использовать утилиту sgdisk. Можно также увидеть, что именно мы будем копировать, на второй диск. Используйте команду:

gdisk -l /dev/sda

] #	gdisk -1	l /dev/sda					
GPT fdi	sk (gdisk)	version	0.8.6					
Partiti	on table s	can:						
MBR: 1	MBR only							
BSD:	not presen	t						
APM:	not presen	t						
GPT:	not presen	t						
******	******	******	*******	*****	*******	*****	******	k
Found in	nvalid GPT	and vali	id MBR; conve	erting	g MBR to	GPT fo	ormat.	
******	******	*******	*******	*****	*******	******	******	k
Disk /d	ev/sda: 39	07029168	sectors, 1.8	3 TiB				
Logical	sector si	ze: 512 k	oytes					
Disk id	entifier (GUID): 9E	24753E-0B52-	-4977-	-8FF6-064	1CODEOI	247	
Partiti	on table h	olds up t	to 128 entrie	s				
First u	sable sect	or is 34,	last usable	e sect	or is 39	9070291	134	
Partiti	ons will b	e aligned	i on 2048-sec	tor k	ooundarie	25		
Total f	ree space :	is 2157 s	sectors (1.1	MiB)				
Number	Start (se	ctor)	End (sector)	Siz	ze	Code	Name	
1	2	048	16525311	7.9	GiB	FD00	Linux	RAID
2	16525	312	18624511	1.0	GiB	FD00	Linux	RAID
3	18624	512	3907028991	1.8	TiB	FD00	Linux	RAID

Утилиту можно скачать, используя репозиторий операционной

системы. В зависимоти от ОС, необходимо указать корректный менеджер пакетов.

CentOS: yum install sgdisk/sfdisk

Debian/Ubuntu: apt install sgdisk/sfdisk

Создание и восстановление резервного копирования MBR/GPT

Перед тем, как копировать таблицу разделов на новый диск рекомендуется сделать резервную копию. При возникновении каких либо проблем, вы сможете восстановить оригинальную таблицу разделов.

Для MBR

Создать:

```
# sfdisk --dump /dev/sdx > sdx_parttable_mbr.bak
```

Восстановить:

sfdisk /dev/sdb > sdx_parttable_mbr.bak

Для GPT

Создать:

sgdisk --backup=sdx_parttable_gpt.bak /dev/sda

Восстановить:

sgdisk --load-backup=sdx_parttable_gpt.bak /dev/sdb

[root@LD218-7 ~] # sgdisk --load-backup=sdx_parttable_gpt.bak /dev/sdb The operation has completed successfully. sda — диск, с которого создаётся копия.

sdb — диск, на который загружается копия таблицы.

Добавление жёсткого диска в массив после замены

Вставте скопированную таблицу разделов с первого диска в новый, используя команду выше. Как только повреждённый диск удалён из массива, можно добавить новый. Это необходимо сделать для каждого раздела.

```
# mdadm /dev/md125 -a /dev/sdb2
# mdadm /dev/md126 -a /dev/sdb1
# mdadm /dev/md127 -a /dev/sdb3
```

Теперь новый диск является частью массива. Синхронизацию дисков вы можете увидеть, введя команду:

cat /proc/mdstat

Далее перезагружаем сервер и видим, что все разделы смонтированы правельно:

lsblk

-							
	[root@LD2]	18-7 ~]#	lsb	lk			
1	NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT
	sda	8:0	0	1.8T	0	disk	
	—sdal	8:1	0	7.9G	0	part	
	L_md126	9:126	0	7.9G	0	raidl	[SWAP]
	—sda2	8:2	0	1G	0	part	
	L_md125	9:125	0	1G	0	raidl	/boot
	L _{sda3}	8:3	0	1.8T	0	part	
	L_md127	9:127	0	1.8T	0	raidl	/
	sdb	8:16	0	1.8T	0	disk	
	-sdb1	8:17	0	7.9G	0	part	
	L_md126	9:126	0	7.9G	0	raidl	[SWAP]
	—sdb2	8:18	0	1G	0	part	
	L_md125	9:125	0	1G	0	raidl	/boot
	L _{sdb3}	8:19	0	1.8T	0	part	
	∟md127	9:127	0	1.8T	0	raidl	/

https://my.fairyhosting.com/knowledgebase.php?action=displayar ticle&id=334&language=swedish

Замена сбойного диска в программном RAID массиве.

Ситуация (для примера): с помощью *mdadm* собран программный RAID1(зеркало) /dev/md0 из 2-х разделов /dev/sda1 и /dev/sdb1.

Задача: заменить сбойный диск /dev/sdb.

Прежде всего, смотрим диагностику:

cat /proc/mdstat

или

mdadm --detail /dev/md0

Если вместо [UU] видим [U_], то дело плохо, целостность одного из дисков нарушена — нужно менять диск.

Для автоматического слежения и мониторинга дисков и массивов можно и нужно использовать возможности пакетов <u>mdadm</u> (monitor mode) и <u>smartmontools</u> (технология S.M.A.R.T.). -1- Прежде всего, делаем так, чтобы с устройством никто не

работал — см. п.1,2 <u>Удаление программного (software) массива</u>

RAID.

-2- Помечаем раздел как сбойный:

mdadm --manage /dev/md0 --fail /dev/sdb1

-З- Отключаем раздел (удаляем из RAID1):

mdadm --manage /dev/md0 --remove /dev/sdb1

-4- Выключаем машину, меняем диск.

-5- Создаем через cfdisk или fdisk идентичные разделы, или с помощью **sfdisk** автоматически копируем структуру разделов первого диска /dev/sda:

sfdisk -d /dev/sda | sfdisk /dev/sdb

Этим способом можно пользоваться, поскольку в нашем примере «зеркальный» RAID1. При других уровнях (raid level), нужно разбить диск на раздел(ы) и пометить его(их) типом ФС «Linux raid autodetect».

-6- Добавляем раздел в RAID1 массив:

mdadm --manage /dev/md0 --add /dev/sdb1

-7- Ждем синхронизации массива:

mdadm --wait /dev/md0

http://avreg.net/howto_software-raid-replacing-faulty-drive.ht
ml

У нас есть сервер в котором 2 диска: /dev/sda и /dev/sdb. Эти диски собраны у нас в софтверный RAID1 с помощью mdadm. Один из дисков вышел из строя, в нашем случае это /dev/sdb.

I. Удаление диска из массива

Перед заменой диска желательно убрать диск из массива.

Для начала проверим как размечен диск в массиве: # cat /proc/mdstat Personalities : [raid1] [raid0] [raid6] [raid5] [raid4] md2 : active raid1 sda4[0] sdb4[1] 1456504640 blocks super 1.2 [2/2] [UU] md1 : active raid1 sda3[0] sdb3[1] 7996352 blocks super 1.2 [2/2] [UU] md0 : active raid1 sda2[0] sdb2[1] 499392 blocks super 1.2 [2/2] [UU] unused devices: <none>

В данном случае массив собран так. Что md0 состоит из sda2 и sdb2, md1 из sda3 и sdb3, md2 из sda4 и sdb4. На этом сервере md0 это /boot, md1 — своп, md2 — корень. Убираем sdb из всех устройств.

mdadm /dev/md0 --remove /dev/sdb2
mdadm /dev/md1 --remove /dev/sdb3
mdadm /dev/md2 --remove /dev/sdb4

Если разделы из массива не удаляются, это как в нашем случае. Mdadm не считает диск неисправным и использует его, и при удалении мы увидим ошибку, что устройство используется. В этом случае перед удалением помечаем диск как сбойный.

mdadm /dev/md0 -f /dev/sdb2
mdadm /dev/md1 -f /dev/sdb3
mdadm /dev/md2 -f /dev/sdb4

А затем снова выполним команды по удалению разделов из массива. Все, мы удалили сбойный диск из массива. Теперь можем писать в датацентр запрос на замену диска.

II. Добавление диска в массив после замены

1. Определение таблицы разделов(GPT или MBR) и перенос её на новый диск

После замены поврежденного диска нужно добавить новый диск в массив. Для этого надо определить какая у нас таблица разделов: GPT или MBR. Для этого будем использовать gdisk Установим gdisk: # apt-get install gdisk -y Выполняем: # gdisk -l /dev/sda Где /dev/sda — исправный диск находящийся в raid. В выводе будет примерно это для MBR: Partition table scan: MBR: MBR only BSD: not present APM: not present GPT: not present И примерно это для GPT: Partition table scan: **MBR:** protective BSD: not present APM: not present GPT: present

Перед добавлением диска в массив нам нужно на нем создать разделы в точности такие же как и на sda. В зависимости от разметки диска это делается по разному.

Копирование разметки для GPT:

sgdisk -R /dev/sdb /dev/sda

Здесь надо быть внимательным. Первым пишется диск на который копируется разметка, а вторым с которого копируют. Если перепутать их местами, то разметка на изначально исправном диске будет уничтожена.

Даем диску новый случайный UIDD:

sgdisk -G /dev/sdb

Копирование разметки для MBR:

sfdisk -d /dev/sda | sfdisk /dev/sdb

Здесь наоборот первым пишется диск с которого переносим разметку, а вторым на который переносим. Если разделы не видны в системе, то можно перечитать таблицу разделов командой:

sfdisk -R /dev/sdb

2. Добавление диска в массив

Когда мы создали разделы на /dev/sdb, то можно добавлять диск в массив.

mdadm /dev/md0 -a /dev/sdb2
mdadm /dev/md1 -a /dev/sdb3
mdadm /dev/md2 -a /dev/sdb4

III. Установка загрузчика

После добавления диска в массив нужно установить на него загрузчик. Если сервер загружен в нормальном режиме, то это делается одной командой:

grub-install /dev/sdb

Если сервер загружен в recovery или rescue, т.е с live cd, то установка загрузчика выглядит следующим образом. Монтируем корневую файловую систему в /mnt:

mount /dev/md2 /mnt

Монтируем boot:

mount /dev/md0 /mnt/boot

Монтируем /dev, /proc и /sys:

mount --bind /dev /mnt/dev
mount --bind /proc /mnt/proc
mount --bind /sys /mnt/sys

Затем делаем chroot в примонтированную систему:

chroot /mnt

И устанавливаем grub на sdb:

grub-install /dev/sdb

Теперь можно попробовать загрузится в нормальный режим.

P.S. Если при установке загрузчика возникнет ошибка Could not find device for /boot/boot: not found or not a block device то вам <u>сюда</u>.

https://anikin.pw/all/zamena-dika-v-programnom-raid1-v-linux/